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Abstract

We discuss some properties of the moduli of smoothness with Jacobi weights
that we have recently introduced and that are defined as

r r/2+a,r/2 r
W, (F) Do = sup [[WEET PO AL (0.

’ 0<h<t p

where p(z) = V1 — 22, AF(f, ) is the kth symmetric difference of f on [~1,1],
Wi (@) 1= (1= = 0p(2) [2)5(1 + 2 = Bip() 2)°,

and a, 8> —1/pif 0 < p < o0, and a, B > 0 if p = c0.
We show, among other things, that for all m,n € N, 0 < p < oo, polynomials
P, of degree < n and sufficiently small ¢,

-1 -1
Wrﬁ,o(Pmt)oc,@p ~ twrfz—l,l(Pr/wt)aﬁ,p ~ e g Wf,mq(R(Lm ),t)a,ﬁ,p

ey
p

where w, g(z) = (1 — )*(1 + x)” is the usual Jacobi weight.

In the spirit of Yingkang Hu’s work, we apply this to characterize the behav-
ior of the polynomials of best approximation of a function in a Jacobi weighted
L, space, 0 < p < oo. Finally we discuss sharp Marchaud and Jackson type
inequalities in the case 1 < p < oo.
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1 Introduction

Recall that the Jacobi weights are defined as w, g(z) := (1 — 2)%(1 + z)?, where
parameters o and 3 are usually assumed to be such that wy g € Ly[—1,1], i.e.,

(—1/p,oo), 1f0<p<OO,

,B€d,:=
0 €y {[O,oo), if p = o0.

We denote by P, the set of all algebraic polynomials of degree < n — 1, and
Lg’B(I) = {f | Hwa,ngLp(I) < OO}, where I C [—1,1]. For convenience, if I =

[~1,1] then we omit I from the notation. For example, |||, := ||| ;_1 1}, Lyf =

Lf,‘"g[—l, 1], etc.
Following [5] we denote B (wq,g) := LyP and

By(wa,s) = { f1/77) € ACie and " f7) € L3P}, 121,

where AC,. denotes the set of functions which are locally absolutely continuous
in (=1,1), and ¢(x) := V1 — 2 Also (see [5]), for k,r € N and f € B} (wq,p), let

(L) Wl (7 asp = s Wit Al 0|
0<h<t P
. r/2+a,r /243 k (r)
= sup |W JA ) ,
0<h1; H kh () hap(-)(.f )‘ Ly (®sn)
where
Ab(fae§) = | Zimo (VDR @ = B i), of o= Bho+ B C S,
Ao 0, otherwise,

is the kth symmetric difference, AF(f,x) :== AF(f,z;[-1,1)),
Wi (@) 1= (1 =2 = 0p(2) [2)5(1 + 2 = 8ip() 2)°,
and
Dy = 1+ p(0), 1 — p(d)], () = 26/ (4 + %)

(note that Aﬁ(p(x)(f,:c) =0if x & D).
We define the main part weighted modulus of smoothness as

(12) Qﬁr(f(r)v A7 t)oz,ﬁ,p = Ssup Hwa,ﬁ()(pr()AZQp()(f(T)a 5 jA,h)‘

0<h<t Lp(Tan)’
where J4 5 == [-1+ Ah?,1 — Ah?] and A > 0.
We also denote
(1.3) 2, (1D Dy = sup a0 (VA (17
0<h<t P

i.e., UY is “the main part modulus Qf with A =0”. However, we want to em-
phasize that while QfT(f(’”), A t)q,5p with A > 0 and wfr(f(’") ,t)a,3,p are bounded
for all f € Bj(wa,s) (see [5, Lemma 2.4]), modulus \Ilf,r(f(r),t)a757p may be infinite

for such functions (for example, this is the case for f such that f()(z) = (1—2)"
with 1/p <y <a+r/2+1/p).



Remark 1.1. We note that the main part modulus is sometimes defined with the
difference inside the norm not restricted to Jap, i.e.,

4 O Aapyi= s [was( e (DA (F.)

0<h<t Lp(3a,n)

Clearly, er(f(T),A,t)awg,p < ﬁ}fr(f(r),A,t)a”g,p. Moreover, we have an estimate
in the oppvdsite direction as well if we replace A with a larger constant A’. For
example, er(f(”),A’,t)aﬁ,p < QfT(f(’”),A,t)a,@p, where A" = 2max{A, k?} (see
(2.9)). At the same time, if A is so small that Dy, C Jan (for example, if
A < Kk%/4), then ﬁfm(f(r),A,t)a,@p = \Iff7r(f(7"),t)a7/37p. Hence, all our results in
this paper are valid with the modulus (1.2) replaced by (1.4) with an additional
assumption that A is sufficiently large (assuming that A > 2k? will do).

Throughout this paper, we use the notation
¢ := min{1, p},

and g stands for some sufficiently small positive constant depending only on «, £,
k and ¢, and independent of n, to be prescribed in the proof of Theorem 2.1.

2 The main result

The following theorem is our main result.

Theorem 2.1. Let k,n e N, r € Ng, A>0,0<p <00, a+r/2,+1r/2 € Jp,
and let 0 < t < gn™', where g is some positive constant that depends only on a,
B, k and q. Then, for any P, € Py,

(21) wf,T(PTET)7t)a,,37P ~ \ij,r(Pér)’ t)Olﬁ»P ~ Qf,r(Pér)ﬂ A7 t)a,,ﬁ,p

k+T‘P(k’+T)
n

s

)

where the equivalence constants depend only on k, v, «, 3, A and q.

The following is an immediate corollary of Theorem 2.1 by virtue of the fact
that, if o, 8 € Jp,, then a +1r/2,8+1r/2 € J, for all » > 0.

Corollary 2.2. Letm,n e N, A>0,0<p < oo, o, € Jp, andlet 0 <t < on~ L.
Then, for any P, € P, and any k € N and r € Ny such that k +r = m,

tikw;:,'l‘(PT(Lr)’ t)avﬁup ~ tik\l’fﬂ“(P(r) ) t)a:5717 ~ tika,T(P}Lr)7 A’ t)aaﬂ)p

n

)

ol

where the equivalence constants depend only on m, «, B, A and q.

It was shown in [5, Corollary 1.9] that, for ¥ € N, r € Ny, /2 + a > 0,
r/24+B82>0,1<p<oo, fe€By(wap) A >1andall t >0,

WE (P M0 < eXwf (7,80

Hence, in the case 1 < p < oo, we can strengthen Corollary 2.2 for the moduli
wy . Namely, the following result is valid.
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Corollary 2.3. Letm,n € N, 1 <p<oo,a,B € Jy, A>0andlet0<t<An L
Then, for any P, € P, and any k € N and r € Ny such that k +r = m,

(B, [ P

n

where the equivalence constants depend only on m, «, B and A.

Remark 2.4. In the case 1 < p < 00, several equivalences in Theorem 2.1 and
Corollary 2.2 follow from [4, Theorems 4 and 5], since, as was shown in [5, (1.8)],
for 1 <p < oo,

(2.2) Wl (P Dapp ~ WD D pors 0 <t < to,

where wf,(g, t)w,p is the three-part weighted Ditzian-Totik modulus of smoothness
(see e.g. [5, (5.1)] for its definition).
Note that it is still an open problem if (2.2) is valid if 0 < p < 1.

Proof of Theorem 2.1. The main idea of the proof is not much different from that
of [4, Theorems 3-5].

First, we note that it suffices to prove Theorem 2.1 in the case r = 0. Indeed,
suppose we proved that, for k,n € N, A>0,0<t<on ', 0<p<o0,a,f € Jp
and any polynomial @Q,, € P,

(2.3) W;ﬁo(Qny t)a,,@,p ~ ‘llio(Qm t)a,ﬁ,p ~ Qﬁo(@m A7 t)a,ﬁ,p
~ tF Hwa 5cka£Lk) ‘ )
p

Then, if P, is an arbitrary polynomial from P,, and r is an arbitrary natural

number, assuming that n > r (otherwise, PT(LT) = 0 and there is nothing to prove)
and denoting Q := P,(f) € P,_,, we have

wlf,r(PT(Lr)7 t)aﬁ,p = wlf,O(Qv t)a+7“/2,,3+r/2,p7

\Il(lir(Pr(Lr)? t)a,ﬁ,p = \ij,o(Qa t)oz+r/2,ﬁ+r/2,pa
Qf,r(P?gr) ’ t)a,B,p = Q?O(Q, A7 t)()H-T/Q,B-i-T/Zp
=
and so (2.1) follows from (2.3) with « and S replaced by o + r/2 and 5 + r/2,

respectively.
Now, note that it immediately follows from the definition that

and
k+TP7g,k+T)

Hwa,w Wartr2,54r/20 QW ‘ )

Y

Wi o9 )asp < UF (95 a0

Also, for A > 0,
on(g, At)app < cw,fjo(g, t)aB,p;

since wq g(z) < ch;Lﬂ(ac) for x such that x + khe(x)/2 € T4 .
Hence, in order to prove (2.3), it suffices to show that

(2.4) U2 0(Qns oy <t ||wa, 56 QP

‘ p
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and
(2.5) i Hwavka%k)Hp < e o(Qns A, V) p-

Recall the following Bernstein-Dzyadyk-type inequality that follows from [4,
(2.24)]: if 0 < p < o0, o, B € Jp and P, € Py, then

wa,5° L] < ens ||wa, o™

1<s<n-—1,

where ¢ depends only on «, 5 and ¢, and is independent of n and s.
This implies that, for any @, € P, and k,j € N,

26) [t 0| < (Lt

wa,BSOkQ%k) ‘ »

, 1<k+j57<n-1.

We now use the following identity (see [4, (2.4)]):
for any @, € P, and k € N, we have

(2_7) h(p(:p Qm Z k+21 Q(k+22( )hk+21§k+2“
i= 0

where K := |(n —1—k)/2], and &; € (—k/2,k/2) depends only on k
and j.

Applying (2.6), we obtain, for 0 <i < K and 0 < h <t < gn~ !,

1 kt2i o (k420) || 20 2 < 2 (k + 21)! H k
= 9y T 270
H @iy Ve Qn ph |Ek+2i| ™ < (co0k/2) Qi | es? QY )
< leooh(k +1)/2] o s QP
< B2i wa,ﬁﬁkagﬂ)‘ ,
p
where we used the estimate (k4 2i)!/((29)!k!) < (k+ 1)21 and where g is taken so
small that the last estimate holds with B := (1/3)!/(29). Note that > 5°, B%4 =

1/2.
Hence, it follows from (2.7) that

K
q 1 . NIK ) %
Hwa,BAiw(Qm ')Hp < hka Z H(%)!waﬂ@kﬂz@(@k”z) h2lq|§|kfgi
i=0 P

. K

< 1 wa, 50 | (1 +y B%‘l>
P i=1

q
<3/2 1w s QY \p.

This immediately implies

WE o (Qn oy < (3/2)94F e sk QL

and so (2.4) is proved.
Recall now the following Remez-type inequality (see e.g. [4, (2.22)]):



If0<p<oo, apf€Jpa>0 ne Nissuch that n > y/a, and
P, € P,, then
(2.8) [wa,sPull, < ¢llwasPallp,

[-1+an—2,1—an—2]>

where ¢ depends only on «, 3, a and gq.

Note that
Qv n7A>t & = su Hwa ) Ak ’ n”j ‘
k,o(Q )aB,p OghIS)t 50) he( )(Q An) Lp(Ja,n)
= su We . Ak . ny " ’ ’
OShI;t () no()(@ns ) Lp(Sk,a.n)

where the set 8 44 is an interval containing all « so that x £ khe(x)/2 € Jap.
Observe that
Sk,an O Jarn,

where A’ := 2max{A, k?}, and so

29 QuAtasy = s ||was()Af Q)|

0<h<t LP(jA’,h)

Now it follows from (2.7) that A’,fw(x) (Qn, ) is a polynomial from P, if k is even,
and it is a polynomial from P,,_; multiplied by ¢ if k is odd.
Hence, (2.8) implies that, for h < 1/(v2A'n),

(210)  |wasAf,(Qu )|

> Hwa,BAzga(an )’

Lp(I 40 1) Lp[-14n=2/2,1-n"2/2]

20’

wa s, (Qn )| -

It now follows from (2.7) that

1 k+21 (k+22)( )hk+21é~k+2’

(21)

Mx

A} o2y (@Qno7) — 0¥ (2)Q

=1

and so, as above,

|was (2% (@Qn,) = o QPRF) HZ <12+ W |lw g QP ‘Z
Therefore,
’wa,BAZw(Qm )HZ >1/2-hM mekaﬁf) ‘Z
which combined with (2.9) and (2.10) implies (2.5). O

3 The polynomials of best approximation

For f € Lff’ﬂ, let Py = Py(f) € P, and Ey(f)w, sp be a polynomial and the
degree of its best weighted approximation, respectively, i.e.,

En(Pwepp:= 10k llwas(f =pa)llp = llwas(f = Po)lp



Recall (see [5, Lemma 2.4] and [6, Theorem 1.4]) that, if &« > 0 and 5 > 0,
then, foranykeN,O<p§ooandf€L§"5,

(3.1) w,f’o(f,t)aﬁ,p < cllwapfl,, t>0,

with ¢ depending only on k, a, 8 and ¢. Also, for any 0 <9 <1,

(3.2) En(fwapp < cwio(f; I VNapp n>k,
where ¢ depends on ¥ as well as k, «, 8 and q.

Theorem 3.1. Let k € N, ,8>0,0<p < oo and f € Lg’ﬁ. Then, for any
n €N,

(3.3) kHwa BSO Hp < awy, to(Prst)asp < Cwlf,o(fv Dapps 12 on ",

where constants ¢ depend only on k, o, 8 and q.
Conversely, for 0 <t < o/k and n:= |p/t],

1/q
o0
(3'4) W]ﬁo(fa t)oe,,B,p <c Zw]ﬁo(Pg*jna 92_%_1)3,5@
=0
- 1/q
—jkq, —k k p*(k
> 2 e s PDI |
=0

where ¢ depends only on k, a, B and q.

Corollary 3.2. Let ke N, a,>0,0<p<o0, f € Lg’ﬁ and v > 0. Then,

(3.5) lwa,50" Pr®lp = O(* ™) iff wfo(f,ap = O7).

Proof of Theorem 3.1. In order to prove (3.3), one may assume that n > k. By
Theorem 2.1 we have

”_k”wa,ﬁ‘PkP;(k)Hp < cg_kw,f’O(P;, Q”_l)aﬁp < awy, O(P t)a,8.p-

At the same time, by (3.1) and (3.2) with 9 = p,

ka(P* )aﬁp<wk0(f )aﬁp+wk0(f’ )aﬁ,p
< ¢fwa, B(f P*)Hq +wio(ft)a s
< cwfo(fen™ o, +wloll Vi,
< cw,f,o(f, t)géﬁ,p’
and (3.3) follows.
In order to prove (3.4) we follow [4]. Assume that 0 < ¢ < g/k and note that
n = |o/t| > k. Let P, € P, be a polynomial of best weighted approximation of
P, e,
Ly = ||was(P5, — Pu)

» = EH(P;n)wa,,va'

Then, (3.2) with ¥ = /2 implies that
In < cwfo(P3n, 0(20) Va,pp,
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while

I3 > |lwa,s(f = Ba)llf = llwa,s(f = Pon)I2 = Bu(), = Bon(f)

Combining the above inequalities we obtain
o0
En(f)guaﬁ,p - Z(EQJTL(f)wa 8P E2j+1 w va Z 2in
j—O
q
< cZka ins 0277 in1) B p

Hence,

ka(f’ )ocﬁp<cwk0(f t)a6p+cka(P* )ozﬁp
< CEW(f), ,p+wioPron™ e 50

Sczwlﬁﬂ( 2in 027 Tn” )75719
=0

[e o]
i _ k
< e 2R, gobPEM g,
j=0

where, for the last inequality, we used Theorem 2.1. This completes the proof of
(3.4). O
4 Further properties of the moduli

Following [5, Definition 1.4], for k € N, 7 € Ng and f € B} (wa,5), 1 < p < oo, we
define the weighted K-functional as follows

Klfyr(f(r) ’ tk)avﬂJ)

= inf {Hwaﬁ(pr(fm_g(r))u HkHwaﬁ(pmgww)
9EBE " (wa, ) p

4

We note that
k k
Klw(f’t )wa,a,p = Klio(f’t )a,ﬁ,w

where Kj, ,(f, tk)wp is the weighted K-functional that was defined in [3, p. 55
(6.1.1)] as

Ko (fs M) = %Bgf {llw(f = 9)llp + " et g®1l,}.

The following lemma immediately follows from [5, Corollary 1.7].

Lemma 4.1. If k e N, r € No, r/24+a >0,r/24+ 8 >0,1 < p < oo and
[ € B (wap), then, for all 0 <t < 2/k,

KL (P )0 pp < aof (O Oasp < KL (FD )0,



Hence,

(4'1) w’fyr(f(r)’ t)avﬁ7p ~ K]ir(f(r)’ tk)avﬂvp = Kkvw(f(r)’ tk)wa+’l‘/2,ﬁ+7‘/27p7

provided that all conditions in Lemma 4.1 are satisfied.
The following sharp Marchaud inequality was proved in [1] for f € Lg"ﬁ , 1<
p < oQ.

Theorem 4.2 ([1, Theorem 7.5]). Form € N, 1 <p < 0o and «, 3 € J,, we have

1/s%
1 Km+1,<p(f7 um+1)fu*a D
Km,tp(fa tm)’u)og,ﬂvp S Ctm </t um5*+1 - du + Em(f)f;a,ﬁvp

and
1/s4

Km,@(f’ tm)wa,ﬁup S Ctm Z ns*milEn(f)f;a,ﬁap ’
n<l/t

where s, = min{2, p}.
In view of (4.1), the following result holds.

Corollary 4.3. For 1l <p<oo,r€Ny,meN, r/24+a>0,r/24+ >0 and
[ € B)(wap), we have

Lt (0, ) e
(17 Dy < CF" </ e At B
¢ u * 5
and
1/sx
wrfz,r(f(r)J)a@p <ct™ Z ns*m_lE”(f(r))fJa,Bw,p ’
n<l/t

where s, = min{2, p}.
The following sharp Jackson inequality was proved in [2].

Theorem 4.4 (]2, Theorem 6.2]). For1 < p < oo, o, f € Jp, and m € N, we have

. 1/s*
2 D2 B (Pn | S OB (£227
J=jo
and
. 1/s*
27 | 32 Ko o (£ 27 | € OB (527

J=Jjo
where 270 > m and s* = max{p, 2}.

Again, by virtue of (4.1), we have,



Corollary 4.5. For 1 <p<oo,r€Nyg,meN, r/24+a>0,r/24+ >0 and
[ € B (wap), we have

1/s*
n
27 Z 2m]s*E2j (f(r))f;a,aw,p < vafl,r(f(r)v 2o
Jj=Jjo
and
. 1/s*
a7 | S omi L (F0, 27 s, | < Cwh ()2
J=jo

where 270 > m and s* = max{p,2}.

Corollary 4.6. For 1l <p<oo,r€Nyg,meN, r/24+a>0,r/24+ >0 and
[ € B)(wa,p), we have

1/m w‘P (f(r) u)s* 1/s*
m m—+1,r U)o, .
t (/t e P du < Cw;‘%,r(f( )7t)a,[3,p, 0<t< 1/m’

where s* = max{p, 2}.
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