On some properties of moduli of smoothness With Jacobi weights *

K. A. Kopotun ${ }^{\dagger}$, D. Leviatan ${ }^{\ddagger}$ and I. A. Shevchuk ${ }^{\S}$

August 14, 2018

Dedicated to the memory of our friend, colleague and collaborator
Yingkang Hu (July 6, 1949 - March 11, 2016)

Abstract

We discuss some properties of the moduli of smoothness with Jacobi weights that we have recently introduced and that are defined as $$
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}:=\sup _{0 \leq h \leq t}\left\|\mathcal{W}_{k h}^{r / 2+\alpha, r / 2+\beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p}
$$ where $\varphi(x)=\sqrt{1-x^{2}}, \Delta_{h}^{k}(f, x)$ is the k th symmetric difference of f on $[-1,1]$, $$
\mathcal{W}_{\delta}^{\xi, \zeta}(x):=(1-x-\delta \varphi(x) / 2)^{\xi}(1+x-\delta \varphi(x) / 2)^{\zeta}
$$ and $\alpha, \beta>-1 / p$ if $0<p<\infty$, and $\alpha, \beta \geq 0$ if $p=\infty$. We show, among other things, that for all $m, n \in \mathbb{N}, 0<p \leq \infty$, polynomials P_{n} of degree $<n$ and sufficiently small t, $$
\begin{aligned} \omega_{m, 0}^{\varphi}\left(P_{n}, t\right)_{\alpha, \beta, p} & \sim t \omega_{m-1,1}^{\varphi}\left(P_{n}^{\prime}, t\right)_{\alpha, \beta, p} \sim \cdots \sim t^{m-1} \omega_{1, m-1}^{\varphi}\left(P_{n}^{(m-1)}, t\right)_{\alpha, \beta, p} \\ & \sim t^{m}\left\|w_{\alpha, \beta} \varphi^{m} P_{n}^{(m)}\right\|_{p} \end{aligned}
$$

where $w_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta}$ is the usual Jacobi weight.
In the spirit of Yingkang Hu's work, we apply this to characterize the behavior of the polynomials of best approximation of a function in a Jacobi weighted L_{p} space, $0<p \leq \infty$. Finally we discuss sharp Marchaud and Jackson type inequalities in the case $1<p<\infty$.

[^0]
1 Introduction

Recall that the Jacobi weights are defined as $w_{\alpha, \beta}(x):=(1-x)^{\alpha}(1+x)^{\beta}$, where parameters α and β are usually assumed to be such that $w_{\alpha, \beta} \in L_{p}[-1,1]$, i.e.,

$$
\alpha, \beta \in J_{p}:= \begin{cases}(-1 / p, \infty), & \text { if } 0<p<\infty \\ {[0, \infty),} & \text { if } p=\infty\end{cases}
$$

We denote by \mathbb{P}_{n} the set of all algebraic polynomials of degree $\leq n-1$, and $L_{p}^{\alpha, \beta}(I):=\left\{f \mid\left\|w_{\alpha, \beta} f\right\|_{L_{p}(I)}<\infty\right\}$, where $I \subseteq[-1,1]$. For convenience, if $I=$ $[-1,1]$ then we omit I from the notation. For example, $\|\cdot\|_{p}:=\|\cdot\|_{L_{p}[-1,1]}, L_{p}^{\alpha, \beta}:=$ $L_{p}^{\alpha, \beta}[-1,1]$, etc.

Following [5] we denote $\mathbb{B}_{p}^{0}\left(w_{\alpha, \beta}\right):=L_{p}^{\alpha, \beta}$, and

$$
\mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right):=\left\{f \mid f^{(r-1)} \in A C_{l o c} \quad \text { and } \quad \varphi^{r} f^{(r)} \in L_{p}^{\alpha, \beta}\right\}, \quad r \geq 1
$$

where $A C_{l o c}$ denotes the set of functions which are locally absolutely continuous in $(-1,1)$, and $\varphi(x):=\sqrt{1-x^{2}}$. Also (see [5]), for $k, r \in \mathbb{N}$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$, let

$$
\begin{align*}
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p} & :=\sup _{0 \leq h \leq t}\left\|\mathcal{W}_{k h}^{r / 2+\alpha, r / 2+\beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p} \tag{1.1}\\
& =\sup _{0<h \leq t}\left\|\mathcal{W}_{k h}^{r / 2+\alpha, r / 2+\beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{L_{p}\left(\mathfrak{D}_{k h}\right)},
\end{align*}
$$

where

$$
\Delta_{h}^{k}(f, x ; S):= \begin{cases}\sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} f\left(x-\frac{k h}{2}+i h\right), & \text { if }\left[x-\frac{k h}{2}, x+\frac{k h}{2}\right] \subseteq S, \\ 0, & \text { otherwise },\end{cases}
$$

is the k th symmetric difference, $\Delta_{h}^{k}(f, x):=\Delta_{h}^{k}(f, x ;[-1,1])$,

$$
\mathcal{W}_{\delta}^{\xi, \zeta}(x):=(1-x-\delta \varphi(x) / 2)^{\xi}(1+x-\delta \varphi(x) / 2)^{\zeta},
$$

and

$$
\mathfrak{D}_{\delta}:=[-1+\mu(\delta), 1-\mu(\delta)], \quad \mu(\delta):=2 \delta^{2} /\left(4+\delta^{2}\right)
$$

(note that $\Delta_{h \varphi(x)}^{k}(f, x)=0$ if $\left.x \notin \mathfrak{D}_{k h}\right)$.
We define the main part weighted modulus of smoothness as

$$
\begin{equation*}
\Omega_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p}:=\sup _{0 \leq h \leq t}\left\|w_{\alpha, \beta}(\cdot) \varphi^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot ; \mathcal{J}_{A, h}\right)\right\|_{L_{p}\left(\mathcal{J}_{A, h}\right)}, \tag{1.2}
\end{equation*}
$$

where $\mathcal{J}_{A, h}:=\left[-1+A h^{2}, 1-A h^{2}\right]$ and $A>0$.
We also denote

$$
\begin{equation*}
\Psi_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}:=\sup _{0 \leq h \leq t}\left\|w_{\alpha, \beta}(\cdot) \varphi^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p} \tag{1.3}
\end{equation*}
$$

i.e., $\Psi_{k, r}^{\varphi}$ is "the main part modulus $\Omega_{k, r}^{\varphi}$ with $A=0$ ". However, we want to emphasize that while $\Omega_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p}$ with $A>0$ and $\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}$ are bounded for all $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$ (see [5, Lemma 2.4]), modulus $\Psi_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}$ may be infinite for such functions (for example, this is the case for f such that $f^{(r)}(x)=(1-x)^{-\gamma}$ with $1 / p \leq \gamma<\alpha+r / 2+1 / p)$.

Remark 1.1. We note that the main part modulus is sometimes defined with the difference inside the norm not restricted to $\mathcal{J}_{A, h}$, i.e.,

$$
\begin{equation*}
\widetilde{\Omega}_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p}:=\sup _{0 \leq h \leq t}\left\|w_{\alpha, \beta}(\cdot) \varphi^{r}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{L_{p}\left(J_{A, h}\right)} \tag{1.4}
\end{equation*}
$$

Clearly, $\Omega_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p} \leq \widetilde{\Omega}_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p}$. Moreover, we have an estimate in the opposite direction as well if we replace A with a larger constant A^{\prime}. For example, $\widetilde{\Omega}_{k, r}^{\varphi}\left(f^{(r)}, A^{\prime}, t\right)_{\alpha, \beta, p} \leq \Omega_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p}$, where $A^{\prime}=2 \max \left\{A, k^{2}\right\}$ (see (2.9)). At the same time, if A is so small that $\mathfrak{D}_{k h} \subset \mathcal{J}_{A, h}$ (for example, if $\left.A \leq k^{2} / 4\right)$, then $\widetilde{\Omega}_{k, r}^{\varphi}\left(f^{(r)}, A, t\right)_{\alpha, \beta, p}=\Psi_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}$. Hence, all our results in this paper are valid with the modulus (1.2) replaced by (1.4) with an additional assumption that A is sufficiently large (assuming that $A \geq 2 k^{2}$ will do).

Throughout this paper, we use the notation

$$
q:=\min \{1, p\}
$$

and ϱ stands for some sufficiently small positive constant depending only on α, β, k and q, and independent of n, to be prescribed in the proof of Theorem 2.1.

2 The main result

The following theorem is our main result.
Theorem 2.1. Let $k, n \in \mathbb{N}, r \in \mathbb{N}_{0}, A>0,0<p \leq \infty, \alpha+r / 2, \beta+r / 2 \in J_{p}$, and let $0<t \leq \varrho n^{-1}$, where ϱ is some positive constant that depends only on α, β, k and q. Then, for any $P_{n} \in \mathbb{P}_{n}$,

$$
\begin{align*}
\omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p} & \sim \Psi_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p} \sim \Omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, A, t\right)_{\alpha, \beta, p} \tag{2.1}\\
& \sim t^{k}\left\|w_{\alpha, \beta} \varphi^{k+r} P_{n}^{(k+r)}\right\|_{p}
\end{align*}
$$

where the equivalence constants depend only on k, r, α, β, A and q.
The following is an immediate corollary of Theorem 2.1 by virtue of the fact that, if $\alpha, \beta \in J_{p}$, then $\alpha+r / 2, \beta+r / 2 \in J_{p}$ for all $r \geq 0$.
Corollary 2.2. Let $m, n \in \mathbb{N}, A>0,0<p \leq \infty, \alpha, \beta \in J_{p}$, and let $0<t \leq \varrho n^{-1}$. Then, for any $P_{n} \in \mathbb{P}_{n}$, and any $k \in \mathbb{N}$ and $r \in \mathbb{N}_{0}$ such that $k+r=m$,

$$
\begin{aligned}
t^{-k} \omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p} & \sim t^{-k} \Psi_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p} \sim t^{-k} \Omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, A, t\right)_{\alpha, \beta, p} \\
& \sim\left\|w_{\alpha, \beta} \varphi^{m} P_{n}^{(m)}\right\|_{p}
\end{aligned}
$$

where the equivalence constants depend only on m, α, β, A and q.
It was shown in [5, Corollary 1.9] that, for $k \in \mathbb{N}, r \in \mathbb{N}_{0}, r / 2+\alpha \geq 0$, $r / 2+\beta \geq 0,1 \leq p \leq \infty, f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right), \lambda \geq 1$ and all $t>0$,

$$
\omega_{k, r}^{\varphi}\left(f^{(r)}, \lambda t\right)_{\alpha, \beta, p} \leq c \lambda^{k} \omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}
$$

Hence, in the case $1 \leq p \leq \infty$, we can strengthen Corollary 2.2 for the moduli $\omega_{k, r}^{\varphi}$. Namely, the following result is valid.

Corollary 2.3. Let $m, n \in \mathbb{N}, 1 \leq p \leq \infty, \alpha, \beta \in J_{p}, \Lambda>0$ and let $0<t \leq \Lambda n^{-1}$. Then, for any $P_{n} \in \mathbb{P}_{n}$, and any $k \in \mathbb{N}$ and $r \in \mathbb{N}_{0}$ such that $k+r=m$,

$$
t^{-k} \omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p} \sim\left\|w_{\alpha, \beta} \varphi^{m} P_{n}^{(m)}\right\|_{p},
$$

where the equivalence constants depend only on m, α, β and Λ.
Remark 2.4. In the case $1 \leq p \leq \infty$, several equivalences in Theorem 2.1 and Corollary 2.2 follow from [4, Theorems 4 and 5], since, as was shown in [5, (1.8)], for $1 \leq p \leq \infty$,

$$
\begin{equation*}
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p} \sim \omega_{\varphi}^{k}\left(f^{(r)}, t\right)_{w_{\alpha, \beta} \varphi^{r}, p}, \quad 0<t \leq t_{0} \tag{2.2}
\end{equation*}
$$

where $\omega_{\varphi}^{k}(g, t)_{w, p}$ is the three-part weighted Ditzian-Totik modulus of smoothness (see e.g. [5, (5.1)] for its definition).

Note that it is still an open problem if (2.2) is valid if $0<p<1$.
Proof of Theorem 2.1. The main idea of the proof is not much different from that of [4, Theorems 3-5].

First, we note that it suffices to prove Theorem 2.1 in the case $r=0$. Indeed, suppose we proved that, for $k, n \in \mathbb{N}, A>0,0<t \leq \varrho n^{-1}, 0<p \leq \infty, \alpha, \beta \in J_{p}$ and any polynomial $Q_{n} \in \mathbb{P}_{n}$,

$$
\begin{align*}
\omega_{k, 0}^{\varphi}\left(Q_{n}, t\right)_{\alpha, \beta, p} & \sim \Psi_{k, 0}^{\varphi}\left(Q_{n}, t\right)_{\alpha, \beta, p} \sim \Omega_{k, 0}^{\varphi}\left(Q_{n}, A, t\right)_{\alpha, \beta, p} \tag{2.3}\\
& \sim t^{k}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}
\end{align*}
$$

Then, if P_{n} is an arbitrary polynomial from \mathbb{P}_{n}, and r is an arbitrary natural number, assuming that $n>r$ (otherwise, $P_{n}^{(r)} \equiv 0$ and there is nothing to prove) and denoting $Q:=P_{n}^{(r)} \in \mathbb{P}_{n-r}$, we have

$$
\begin{gathered}
\omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p}=\omega_{k, 0}^{\varphi}(Q, t)_{\alpha+r / 2, \beta+r / 2, p}, \\
\Psi_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p}=\Psi_{k, 0}^{\varphi}(Q, t)_{\alpha+r / 2, \beta+r / 2, p} \\
\Omega_{k, r}^{\varphi}\left(P_{n}^{(r)}, t\right)_{\alpha, \beta, p}=\Omega_{k, 0}^{\varphi}(Q, A, t)_{\alpha+r / 2, \beta+r / 2, p}
\end{gathered}
$$

and

$$
\left\|w_{\alpha, \beta} \varphi^{k+r} P_{n}^{(k+r)}\right\|_{p}=\left\|\omega_{\alpha+r / 2, \beta+r / 2} \varphi^{k} Q^{(k)}\right\|_{p},
$$

and so (2.1) follows from (2.3) with α and β replaced by $\alpha+r / 2$ and $\beta+r / 2$, respectively.

Now, note that it immediately follows from the definition that

$$
\omega_{k, 0}^{\varphi}(g, t)_{\alpha, \beta, p} \leq \Psi_{k, 0}^{\varphi}(g, t)_{\alpha, \beta, p}
$$

Also, for $A>0$,

$$
\Omega_{k, 0}^{\varphi}(g, A, t)_{\alpha, \beta, p} \leq c \omega_{k, 0}^{\varphi}(g, t)_{\alpha, \beta, p},
$$

since $w_{\alpha, \beta}(x) \leq c \mathcal{W}_{k h}^{\alpha, \beta}(x)$ for x such that $x \pm k h \varphi(x) / 2 \in \mathcal{J}_{A, h}$.
Hence, in order to prove (2.3), it suffices to show that

$$
\begin{equation*}
\Psi_{k, 0}^{\varphi}\left(Q_{n}, t\right)_{\alpha, \beta, p} \leq c t^{k}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{k}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p} \leq c \Omega_{k, 0}^{\varphi}\left(Q_{n}, A, t\right)_{\alpha, \beta, p} \tag{2.5}
\end{equation*}
$$

Recall the following Bernstein-Dzyadyk-type inequality that follows from [4, $(2.24)]$: if $0<p \leq \infty, \alpha, \beta \in J_{p}$ and $P_{n} \in \mathbb{P}_{n}$, then

$$
\left\|w_{\alpha, \beta} \varphi^{s} P_{n}^{\prime}\right\|_{p} \leq c n s\left\|w_{\alpha, \beta} \varphi^{s-1} P_{n}\right\|_{p}, \quad 1 \leq s \leq n-1
$$

where c depends only on α, β and q, and is independent of n and s.
This implies that, for any $Q_{n} \in \mathbb{P}_{n}$ and $k, j \in \mathbb{N}$,

$$
\begin{equation*}
\left\|w_{\alpha, \beta} \varphi^{k+j} Q_{n}^{(k+j)}\right\|_{p} \leq\left(c_{0} n\right)^{j} \frac{(k+j)!}{k!}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}, \quad 1 \leq k+j \leq n-1 \tag{2.6}
\end{equation*}
$$

We now use the following identity (see [4, (2.4)]): for any $Q_{n} \in \mathbb{P}_{n}$ and $k \in \mathbb{N}$, we have

$$
\begin{equation*}
\Delta_{h \varphi(x)}^{k}\left(Q_{n}, x\right)=\sum_{i=0}^{K} \frac{1}{(2 i)!} \varphi^{k+2 i}(x) Q_{n}^{(k+2 i)}(x) h^{k+2 i} \xi_{k+2 i}^{2 i} \tag{2.7}
\end{equation*}
$$

where $K:=\lfloor(n-1-k) / 2\rfloor$, and $\xi_{j} \in(-k / 2, k / 2)$ depends only on k and j.
Applying (2.6), we obtain, for $0 \leq i \leq K$ and $0<h \leq t \leq \varrho n^{-1}$,

$$
\begin{aligned}
\left\|\frac{1}{(2 i)!} w_{\alpha, \beta} \varphi^{k+2 i} Q_{n}^{(k+2 i)}\right\|_{p} h^{2 i}\left|\xi_{k+2 i}\right|^{2 i} & \leq\left(c_{0} \varrho k / 2\right)^{2 i} \frac{(k+2 i)!}{(2 i)!k!}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p} \\
& \leq\left[c_{0} \varrho k(k+1) / 2\right]^{2 i}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p} \\
& \leq B^{2 i}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}
\end{aligned}
$$

where we used the estimate $(k+2 i)!/((2 i)!k!) \leq(k+1)^{2 i}$, and where ϱ is taken so small that the last estimate holds with $B:=(1 / 3)^{1 /(2 q)}$. Note that $\sum_{i=1}^{\infty} B^{2 i q}=$ $1 / 2$.

Hence, it follows from (2.7) that

$$
\begin{aligned}
\left\|w_{\alpha, \beta} \Delta_{h \varphi}^{k}\left(Q_{n}, \cdot\right)\right\|_{p}^{q} & \leq h^{k q} \sum_{i=0}^{K}\left\|\frac{1}{(2 i)!} w_{\alpha, \beta} \varphi^{k+2 i} Q_{n}^{(k+2 i)}\right\|_{p}^{q} h^{2 i q}|\xi|_{k+2 i}^{2 i q} \\
& \leq h^{k q}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}^{q}\left(1+\sum_{i=1}^{K} B^{2 i q}\right) \\
& \leq 3 / 2 \cdot h^{k q}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}^{q}
\end{aligned}
$$

This immediately implies

$$
\Psi_{k, 0}^{\varphi}\left(Q_{n}, t\right)_{\alpha, \beta, p} \leq(3 / 2)^{1 / q} t^{k}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}
$$

and so (2.4) is proved.
Recall now the following Remez-type inequality (see e.g. $[4,(2.22)]$):

If $0<p \leq \infty, \alpha, \beta \in J_{p}, a \geq 0, n \in \mathbb{N}$ is such that $n>\sqrt{a}$, and $P_{n} \in \mathbb{P}_{n}$, then

$$
\begin{equation*}
\left\|w_{\alpha, \beta} P_{n}\right\|_{p} \leq c\left\|w_{\alpha, \beta} P_{n}\right\|_{L_{p}\left[-1+a n^{-2}, 1-a n^{-2}\right]}, \tag{2.8}
\end{equation*}
$$

where c depends only on α, β, a and q.
Note that

$$
\begin{aligned}
\Omega_{k, 0}^{\varphi}\left(Q_{n}, A, t\right)_{\alpha, \beta, p} & =\sup _{0 \leq h \leq t}\left\|w_{\alpha, \beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(Q_{n}, \cdot ; \mathcal{J}_{A, h}\right)\right\|_{L_{p}\left(\mathcal{J}_{A, h}\right)} \\
& =\sup _{0 \leq h \leq t}\left\|w_{\alpha, \beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(Q_{n}, \cdot\right)\right\|_{L_{p}\left(s_{k, A, h}\right)},
\end{aligned}
$$

where the set $\mathcal{S}_{k, A, h}$ is an interval containing all x so that $x \pm k h \varphi(x) / 2 \in \mathcal{J}_{A, h}$. Observe that

$$
\mathcal{S}_{k, A, h} \supset \mathcal{J}_{A^{\prime}, h},
$$

where $A^{\prime}:=2 \max \left\{A, k^{2}\right\}$, and so

$$
\begin{equation*}
\Omega_{k, 0}^{\varphi}\left(Q_{n}, A, t\right)_{\alpha, \beta, p} \geq \sup _{0 \leq h \leq t}\left\|w_{\alpha, \beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(Q_{n}, \cdot\right)\right\|_{L_{p}\left(\mathcal{J}_{A^{\prime}, h}\right)} \tag{2.9}
\end{equation*}
$$

Now it follows from (2.7) that $\Delta_{h \varphi(x)}^{k}\left(Q_{n}, x\right)$ is a polynomial from \mathbb{P}_{n} if k is even, and it is a polynomial from \mathbb{P}_{n-1} multiplied by φ if k is odd.

Hence, (2.8) implies that, for $h \leq 1 /\left(\sqrt{2 A^{\prime}} n\right)$,

$$
\begin{align*}
\left\|w_{\alpha, \beta} \Delta_{h \varphi}^{k}\left(Q_{n}, \cdot\right)\right\|_{L_{p}\left(\mathcal{J}_{A^{\prime}, h}\right)} & \geq\left\|w_{\alpha, \beta} \Delta_{h \varphi}^{k}\left(Q_{n}, \cdot\right)\right\|_{L_{p}\left[-1+n^{-2} / 2,1-n^{-2} / 2\right]} \tag{2.10}\\
& \geq c\left\|w_{\alpha, \beta} \Delta_{h \varphi}^{k}\left(Q_{n}, \cdot\right)\right\|_{p} .
\end{align*}
$$

It now follows from (2.7) that

$$
\Delta_{h \varphi(x)}^{k}\left(Q_{n}, x\right)-\varphi^{k}(x) Q_{n}^{(k)}(x) h^{k}=\sum_{i=1}^{K} \frac{1}{(2 i)!} \varphi^{k+2 i}(x) Q_{n}^{(k+2 i)}(x) h^{k+2 i} \xi_{k+2 i}^{2 i},
$$

and so, as above,

$$
\left\|w_{\alpha, \beta}\left(\Delta_{h \varphi}^{k}\left(Q_{n}, \cdot\right)-\varphi^{k} Q_{n}^{(k)} h^{k}\right)\right\|_{p}^{q} \leq 1 / 2 \cdot h^{k q}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}^{q} .
$$

Therefore,

$$
\left\|w_{\alpha, \beta} \Delta_{h \varphi}^{k}\left(Q_{n}, \cdot\right)\right\|_{p}^{q} \geq 1 / 2 \cdot h^{k q}\left\|w_{\alpha, \beta} \varphi^{k} Q_{n}^{(k)}\right\|_{p}^{q},
$$

which combined with (2.9) and (2.10) implies (2.5).

3 The polynomials of best approximation

For $f \in L_{p}^{\alpha, \beta}$, let $P_{n}^{*}=P_{n}^{*}(f) \in \mathbb{P}_{n}$ and $E_{n}(f)_{w_{\alpha, \beta}, p}$ be a polynomial and the degree of its best weighted approximation, respectively, i.e.,

$$
E_{n}(f)_{w_{\alpha, \beta}, p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|w_{\alpha, \beta}\left(f-p_{n}\right)\right\|_{p}=\left\|w_{\alpha, \beta}\left(f-P_{n}^{*}\right)\right\|_{p}
$$

Recall (see [5, Lemma 2.4] and [6, Theorem 1.4]) that, if $\alpha \geq 0$ and $\beta \geq 0$, then, for any $k \in \mathbb{N}, 0<p \leq \infty$ and $f \in L_{p}^{\alpha, \beta}$,

$$
\begin{equation*}
\omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p} \leq c\left\|w_{\alpha, \beta} f\right\|_{p}, \quad t>0 \tag{3.1}
\end{equation*}
$$

with c depending only on k, α, β and q. Also, for any $0<\vartheta \leq 1$,

$$
\begin{equation*}
E_{n}(f)_{w_{\alpha, \beta}, p} \leq c \omega_{k, 0}^{\varphi}\left(f, \vartheta n^{-1}\right)_{\alpha, \beta, p}, \quad n \geq k \tag{3.2}
\end{equation*}
$$

where c depends on ϑ as well as k, α, β and q.
Theorem 3.1. Let $k \in \mathbb{N}, \alpha, \beta \geq 0,0<p \leq \infty$ and $f \in L_{p}^{\alpha, \beta}$. Then, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
n^{-k}\left\|w_{\alpha, \beta} \varphi^{k} P_{n}^{*(k)}\right\|_{p} \leq c \omega_{k, 0}^{\varphi}\left(P_{n}^{*}, t\right)_{\alpha, \beta, p} \leq c \omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}, \quad t \geq \varrho n^{-1} \tag{3.3}
\end{equation*}
$$

where constants c depend only on k, α, β and q.
Conversely, for $0<t \leq \varrho / k$ and $n:=\lfloor\varrho / t\rfloor$,

$$
\begin{align*}
\omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p} & \leq c\left(\sum_{j=0}^{\infty} \omega_{k, 0}^{\varphi}\left(P_{2 j n}^{*}, \varrho 2^{-j} n^{-1}\right)_{\alpha, \beta, p}^{q}\right)^{1 / q} \tag{3.4}\\
& \leq c\left(\sum_{j=0}^{\infty} 2^{-j k q} n^{-k q}\left\|w_{\alpha, \beta} \varphi^{k} P_{2 j_{n}}^{*(k)}\right\|_{p}^{q}\right)^{1 / q},
\end{align*}
$$

where c depends only on k, α, β and q.
Corollary 3.2. Let $k \in \mathbb{N}, \alpha, \beta \geq 0,0<p \leq \infty, f \in L_{p}^{\alpha, \beta}$ and $\gamma>0$. Then,

$$
\begin{equation*}
\left\|w_{\alpha, \beta} \varphi^{k} P_{n}^{*(k)}\right\|_{p}=O\left(n^{k-\gamma}\right) \quad \text { iff } \quad \omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}=O\left(t^{\gamma}\right) . \tag{3.5}
\end{equation*}
$$

Proof of Theorem 3.1. In order to prove (3.3), one may assume that $n \geq k$. By Theorem 2.1 we have

$$
n^{-k}\left\|w_{\alpha, \beta} \varphi^{k} P_{n}^{*(k)}\right\|_{p} \leq c \varrho^{-k} \omega_{k, 0}^{\varphi}\left(P_{n}^{*}, \varrho n^{-1}\right)_{\alpha, \beta, p} \leq c \omega_{k, 0}^{\varphi}\left(P_{n}^{*}, t\right)_{\alpha, \beta, p}
$$

At the same time, by (3.1) and (3.2) with $\vartheta=\varrho$,

$$
\begin{aligned}
\omega_{k, 0}^{\varphi}\left(P_{n}^{*}, t\right)_{\alpha, \beta, p}^{q} & \leq \omega_{k, 0}^{\varphi}\left(f-P_{n}^{*}, t\right)_{\alpha, \beta, p}^{q}+\omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}^{q} \\
& \leq c\left\|w_{\alpha, \beta}\left(f-P_{n}^{*}\right)\right\|_{p}^{q}+\omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}^{q} \\
& \leq c \omega_{k, 0}^{\varphi}\left(f, \varrho n^{-1}\right)_{\alpha, \beta, p}^{q}+\omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}^{q} \\
& \leq c \omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}^{q},
\end{aligned}
$$

and (3.3) follows.
In order to prove (3.4) we follow [4]. Assume that $0<t \leq \varrho / k$ and note that $n=\lfloor\varrho / t\rfloor \geq k$. Let $\hat{P}_{n} \in \mathbb{P}_{n}$ be a polynomial of best weighted approximation of $P_{2 n}^{*}$, i.e.,

$$
I_{n}:=\left\|w_{\alpha, \beta}\left(P_{2 n}^{*}-\hat{P}_{n}\right)\right\|_{p}=E_{n}\left(P_{2 n}^{*}\right)_{w_{\alpha, \beta}, p} .
$$

Then, (3.2) with $\vartheta=\varrho / 2$ implies that

$$
I_{n} \leq c \omega_{k, 0}^{\varphi}\left(P_{2 n}^{*}, \varrho(2 n)^{-1}\right)_{\alpha, \beta, p},
$$

while

$$
I_{n}^{q} \geq\left\|w_{\alpha, \beta}\left(f-\hat{P}_{n}\right)\right\|_{p}^{q}-\left\|w_{\alpha, \beta}\left(f-P_{2 n}^{*}\right)\right\|_{p}^{q} \geq E_{n}(f)_{w_{\alpha, \beta}, p}^{q}-E_{2 n}(f)_{w_{\alpha, \beta}, p}^{q}
$$

Combining the above inequalities we obtain

$$
\begin{aligned}
E_{n}(f)_{w_{\alpha, \beta}, p}^{q} & =\sum_{j=0}^{\infty}\left(E_{2^{j} n}(f)_{w_{\alpha, \beta}, p}^{q}-E_{2^{j+1} n}(f)_{w_{\alpha, \beta, p}}^{q}\right) \leq \sum_{j=0}^{\infty} I_{2^{j} n}^{q} \\
& \leq c \sum_{j=1}^{\infty} \omega_{k, 0}^{\varphi}\left(P_{2^{j} n}^{*}, \varrho 2^{-j} n^{-1}\right)_{\alpha, \beta, p}^{q} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\omega_{k, 0}^{\varphi}(f, t)_{\alpha, \beta, p}^{q} & \leq c \omega_{k, 0}^{\varphi}\left(f-P_{n}^{*}, t\right)_{\alpha, \beta, p}^{q}+c \omega_{k, 0}^{\varphi}\left(P_{n}^{*}, t\right)_{\alpha, \beta, p}^{q} \\
& \leq c E_{n}(f)_{w_{\alpha, \beta}, p}^{q}+c \omega_{k, 0}^{\varphi}\left(P_{n}^{*}, \varrho n^{-1}\right)_{\alpha, \beta, p}^{q} \\
& \leq c \sum_{j=0}^{\infty} \omega_{k, 0}^{\varphi}\left(P_{2^{j} n}^{*}, \varrho 2^{-j} n^{-1}\right)_{\alpha, \beta, p}^{q} \\
& \leq c \sum_{j=0}^{\infty} 2^{-j k q} n^{-k q}\left\|w_{\alpha, \beta} \varphi^{k} P_{2^{j} n}^{*(k)}\right\|_{p}^{q}
\end{aligned}
$$

where, for the last inequality, we used Theorem 2.1. This completes the proof of (3.4).

4 Further properties of the moduli

Following [5, Definition 1.4], for $k \in \mathbb{N}, r \in \mathbb{N}_{0}$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right), 1 \leq p \leq \infty$, we define the weighted K-functional as follows

$$
\begin{aligned}
& K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{\alpha, \beta, p} \\
& \quad:=\inf _{g \in \mathbb{B}_{p}^{k+r}\left(w_{\alpha, \beta}\right)}\left\{\left\|w_{\alpha, \beta} \varphi^{r}\left(f^{(r)}-g^{(r)}\right)\right\|_{p}+t^{k}\left\|w_{\alpha, \beta} \varphi^{k+r} g^{(k+r)}\right\|_{p}\right\} .
\end{aligned}
$$

We note that

$$
K_{k, \varphi}\left(f, t^{k}\right)_{w_{\alpha, \beta}, p}=K_{k, 0}^{\varphi}\left(f, t^{k}\right)_{\alpha, \beta, p},
$$

where $K_{k, \varphi}\left(f, t^{k}\right)_{w, p}$ is the weighted K-functional that was defined in [3, p. 55 (6.1.1)] as

$$
K_{k, \varphi}\left(f, t^{k}\right)_{w, p}:=\inf _{g \in \mathbb{B}_{p}^{k}(w)}\left\{\|w(f-g)\|_{p}+t^{k}\left\|w \varphi^{k} g^{(k)}\right\|_{p}\right\} .
$$

The following lemma immediately follows from [5, Corollary 1.7].
Lemma 4.1. If $k \in \mathbb{N}, r \in \mathbb{N}_{0}, r / 2+\alpha \geq 0, r / 2+\beta \geq 0,1 \leq p \leq \infty$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$, then, for all $0<t \leq 2 / k$,

$$
K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{\alpha, \beta, p} \leq c \omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p} \leq c K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{\alpha, \beta, p} .
$$

Hence,

$$
\begin{equation*}
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p} \sim K_{k, r}^{\varphi}\left(f^{(r)}, t^{k}\right)_{\alpha, \beta, p}=K_{k, \varphi}\left(f^{(r)}, t^{k}\right)_{w_{\alpha+r / 2, \beta+r / 2}, p} \tag{4.1}
\end{equation*}
$$

provided that all conditions in Lemma 4.1 are satisfied.
The following sharp Marchaud inequality was proved in [1] for $f \in L_{p}^{\alpha, \beta}, 1<$ $p<\infty$.

Theorem $4.2\left(\left[1\right.\right.$, Theorem 7.5]). For $m \in \mathbb{N}, 1<p<\infty$ and $\alpha, \beta \in J_{p}$, we have

$$
K_{m, \varphi}\left(f, t^{m}\right)_{w_{\alpha, \beta}, p} \leq C t^{m}\left(\int_{t}^{1} \frac{K_{m+1, \varphi}\left(f, u^{m+1}\right)_{w_{\alpha, \beta}, p}^{s_{*}}}{u^{m s_{*}+1}} d u+E_{m}(f)_{w_{\alpha, \beta}, p}^{s_{*}}\right)^{1 / s_{*}}
$$

and

$$
K_{m, \varphi}\left(f, t^{m}\right)_{w_{\alpha, \beta}, p} \leq C t^{m}\left(\sum_{n<1 / t} n^{s_{*} m-1} E_{n}(f)_{w_{\alpha, \beta}, p}^{s_{*}}\right)^{1 / s_{*}}
$$

where $s_{*}=\min \{2, p\}$.
In view of (4.1), the following result holds.
Corollary 4.3. For $1<p<\infty, r \in \mathbb{N}_{0}, m \in \mathbb{N}, r / 2+\alpha \geq 0, r / 2+\beta \geq 0$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$, we have

$$
\omega_{m, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p} \leq C t^{m}\left(\int_{t}^{1} \frac{\omega_{m+1, r}^{\varphi}\left(f^{(r)}, u\right)_{\alpha, \beta, p}^{s_{*}}}{u^{m s_{*}+1}} d u+E_{m}\left(f^{(r)}\right)_{w_{\alpha, \beta} \varphi^{r}, p}^{s_{*}}\right)^{1 / s_{*}}
$$

and

$$
\omega_{m, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p} \leq C t^{m}\left(\sum_{n<1 / t} n^{s_{*} m-1} E_{n}\left(f^{(r)}\right)_{w_{\alpha, \beta} \varphi^{r}, p}^{s_{*}}\right)^{1 / s_{*}}
$$

where $s_{*}=\min \{2, p\}$.
The following sharp Jackson inequality was proved in [2].
Theorem $4.4\left(\left[2\right.\right.$, Theorem 6.2]). For $1<p<\infty, \alpha, \beta \in J_{p}$ and $m \in \mathbb{N}$, we have

$$
2^{-n m}\left(\sum_{j=j_{0}}^{n} 2^{m j s^{*}} E_{2^{j}}(f)_{w_{\alpha, \beta}, p}^{s^{*}}\right)^{1 / s^{*}} \leq C K_{m, \varphi}\left(f, 2^{-n m}\right)_{w_{\alpha, \beta}, p}
$$

and

$$
2^{-n m}\left(\sum_{j=j_{0}}^{n} 2^{m j s^{*}} K_{m+1, \varphi}\left(f, 2^{-j(m+1)}\right)_{w_{\alpha, \beta}, p}^{s^{*}}\right)^{1 / s^{*}} \leq C K_{m, \varphi}\left(f, 2^{-n m}\right)_{w_{\alpha, \beta}, p}
$$

where $2^{j_{0}} \geq m$ and $s^{*}=\max \{p, 2\}$.
Again, by virtue of (4.1), we have,

Corollary 4.5. For $1<p<\infty, r \in \mathbb{N}_{0}, m \in \mathbb{N}, r / 2+\alpha \geq 0, r / 2+\beta \geq 0$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$, we have

$$
2^{-n m}\left(\sum_{j=j_{0}}^{n} 2^{m j s^{*}} E_{2^{j}}\left(f^{(r)}\right)_{w_{\alpha, \beta}}^{s^{*}} \varphi^{r}, p\right)^{1 / s^{*}} \leq C \omega_{m, r}^{\varphi}\left(f^{(r)}, 2^{-n}\right)_{\alpha, \beta, p}
$$

and

$$
2^{-n m}\left(\sum_{j=j_{0}}^{n} 2^{m j s^{*}} \omega_{m+1, r}^{\varphi}\left(f^{(r)}, 2^{-j}\right)_{\alpha, \beta, p}^{s^{*}}\right)^{1 / s^{*}} \leq C \omega_{m, r}^{\varphi}\left(f^{(r)}, 2^{-n}\right)_{\alpha, \beta, p}
$$

where $2^{j_{0}} \geq m$ and $s^{*}=\max \{p, 2\}$.
Corollary 4.6. For $1<p<\infty, r \in \mathbb{N}_{0}, m \in \mathbb{N}, r / 2+\alpha \geq 0, r / 2+\beta \geq 0$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$, we have

$$
t^{m}\left(\int_{t}^{1 / m} \frac{\omega_{m+1, r}^{\varphi}\left(f^{(r)}, u\right)_{\alpha, \beta, p}^{s^{*}}}{u^{m s^{*}+1}} d u\right)^{1 / s^{*}} \leq C \omega_{m, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}, \quad 0<t \leq 1 / m
$$

where $s^{*}=\max \{p, 2\}$.

References

[1] F. Dai and Z. Ditzian, Littlewood-Paley theory and a sharp Marchaud inequality, Acta Sci. Math. (Szeged) 71 (2005), no. 1-2, 65-90.
[2] F. Dai, Z. Ditzian, and S. Tikhonov, Sharp Jackson inequalities, J. Approx. Theory 151 (2008), no. 1, 86-112.
[3] Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, vol. 9, Springer-Verlag, New York, 1987.
[4] Y. Hu and Y. Liu, On equivalence of moduli of smoothness of polynomials in L_{p}, $0<p \leq \infty$, J. Approx. Theory 136 (2005), no. 2, 182-197.
[5] K. A. Kopotun, D. Leviatan, and I. A. Shevchuk, On moduli of smoothness with Jacobi weights, Ukrainian Math. J., available at http://arxiv.org/abs/1709.00705.
[6] _, On weighted approximation with Jacobi weights, available at http://arxiv. org/abs/1710. 05059.

[^0]: *AMS classification: 41A10, 41A17, 41A25. Keywords and phrases: Approximation by polynomials in weighted L_{p}-norms, Jacobi weights, moduli of smoothness.
 ${ }^{\dagger}$ Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada (kirill.kopotun@umanitoba.ca). Supported by NSERC of Canada Discovery Grant RGPIN 04215-15.
 ${ }^{\ddagger}$ Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6139001, Israel (leviatan@post.tau.ac.il).
 ${ }^{\S}$ Faculty of Mechanics and Mathematics, National Taras Shevchenko University of Kyiv, 01033 Kyiv, Ukraine (shevchuk@univ.kiev.ua).

